


Introduction to decoding
At the single neuron level, decoding in trial-based designs is straightforward: asking 
whether the firing rate of a neuron is the same or different across conditions.

For example, is the firing rate the same or different for lick right and lick left trials in the 
delay period 



Quantifying decodability
D-prime: difference between the means of the two groups, normalized by 
the standard deviation within group

Neuron 1
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Quantifying decodability
D-prime: difference between the means of the two groups, normalized by 
the standard deviation within group

Neuron 1 Neuron 2 Neuron 3
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There are additional measures, like Receiver Operating Characteristic (ROC)



Population decoders

Can we combine firing rates across neurons to better tell apart which trial type it is?
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Linear Discriminant Analysis
What weights should we assign these neurons?

Neuron 1 Neuron 2 Neuron 3

𝑑! =
𝜇" − 𝜇#
𝜎$

Weights are given by the solution to an optimization problem: weights that best 
separate the two trial types (under some assumptions)



Normalized firing rate neuron 1
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Example Linear Discriminant Analysis on synthetic data

We want a 
weighted sum that 

maximizes 
separability 

between the two 
classes once 

projected down to 
the decoder
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Normalized firing rate neuron 1
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Normalized firing rate neuron 1
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Normalized firing rate neuron 1
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Skip derivation



Linear Discriminant Analysis
Weighted linear sum. What weights should we assign these neurons?

Neuron 1 Neuron 2 Neuron 3

𝑑! =
𝜇" − 𝜇#
𝜎$

Solution isn’t exactly taking the d-prime for each neuron



Linear Discriminant Analysis
Weighted linear sum. What weights should we assign these neurons?

Neuron 1 Neuron 2 Neuron 3

𝑆#$!𝑆%Solution to optimization given by top eigenvectors of matrix:

S_W is the within group variance matrix, S_B is the between group variance matrix

𝑑! =
𝜇" − 𝜇#
𝜎$



Overfitting and separation of training and test datasets

Samples from synthetic dataset generated randomly with the same mean



Overfitting and separation of training and test datasets

Training set Test set

Over fitting!



Normalized firing rate neuron 1
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Normalized firing rate neuron 1
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Decoder is static, but one can analyze projection over time
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Switching gears: analyzing structure in population recordings



Modeling structure in population recordings: why do it?



Modeling structure in population recordings: why do it?



Modeling structure in population recordings: why do it?



Modeling structure in population recordings: why do it?

Trajectory very unlikely given our understanding of the system! 



Modeling structure in population recordings: why do it?

Trajectory very unlikely given our understanding of the system! 

Assume measurements were noisy and use them to pick trajectory consistent with 
understanding of system and the measurements



Example: animal properties

PanTHERIA dataset



Example: animal properties

Blue whale

PanTHERIA dataset



Example: animal properties

Mauritanian Shrew

Blue whale

PanTHERIA dataset



Factor analysis
These two properties can be thought of as connected through a common factor 
which we could call “Size”



Data recipe:
Generate random 1D Gaussian

Latent variable models as data recipes



Date recipe:
Start with random 1D Gaussian
Multiply by “Size” factor

Latent variable models as data recipes



Noise contribution explains deviation of data from factor values
Date recipe:
Start with random 1D Gaussian
Multiply by “Size” factor



Contribution of 
noise necessary 
to explain the 
location of the 

data point

Noise contribution explains deviation of data from factor values
Date recipe:
Start with random 1D Gaussian
Multiply by “Size” factor
Add independent noise to each point



Data recipe:
Start with random 1D Gaussian
Multiply by “Size” factor
Add independent noise to each point

Latent variable models as data recipes



Data recipe:
Start with random 1D Gaussian
Multiply by “Size” factor
Add independent noise to each point

Latent variable models as data recipes
Why a recipe?
It allows us to say just how likely is it to have 
observed an animal with a certain head 
length and body mass given the model



Example of a bad factor model
Why a recipe?
It allows us to say just how likely is it to have observed an animal with a certain 
head length and body mass given the model



Contribution of 
noise necessary 
to explain the 
location of the 

data point

Bad models need increasingly unlikely noise contribution
Why a recipe?
It allows us to say just how likely is it to have observed an animal with a certain 
head length and body mass given the model



Bad models need increasingly unlikely noise contribution

Contribution of 
noise necessary 
to explain the 
location of the 

data point

Why a recipe?
It allows us to say just how likely is it to have observed an animal with a certain 
head length and body mass given the model



Probability of a data point: Gaussian distributions

𝑃 𝑦 = 𝑦12324 =
1
2𝜋𝜎

𝑒𝑥𝑝 −
𝑦12324 − 𝜇

#

2𝜎#

One-dimensional Gaussian

Probability is proportional to distance from
mean in units of standard deviation 

𝑃 𝑦 = 𝑦12324 ~ −
𝑦12324 − 𝜇

#

2𝜎#



Data is more likely (less noise needed to explain) with good models



Probability of a data point: Gaussian distributions

One dimensional Gaussian

𝑃 𝑦 = 𝑦12324 =
1
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Multivariate Gaussian
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And now with equations: probability of a data point

𝑃 𝑦 𝑥 ~𝒩 0,Ψ

𝑃 𝑧 = 𝒩 0,1

𝑥 = 𝑧 ∗ 𝑓 + µ

Data recipe:

We can now write the probability of a data point:

𝑃(𝑦)~𝒩 𝜇, 𝑓𝑓6 +Ψ

Start with random 1D Gaussian

Multiply by size factor

Assume independent noise for each point

𝑃 𝑦 = 𝑦12324 =
1

2𝜋 %/# 𝑓𝑓6 +Ψ "/# 𝑒𝑥𝑝 𝑦12324 − 𝜇
6
𝑓𝑓6 +Ψ 7" 𝑦12324 − 𝜇

And the full expression:



And now with equations: probability of dataset

𝑃(𝑦)~𝒩 𝜇, 𝑓𝑓6 +Ψ

𝑃 𝐷𝑎𝑡𝑎 = K
1232 8)4%3* 4

𝑃(𝑦 = 𝑦12324 )

log(𝑃 𝐷𝑎𝑡𝑎 ) = 5
1232 8)4%3* 4

log(𝑃(𝑦 = 𝑦12324 )

We find the latent structure by assuming a given structure and finding the parameters 
(relation between size factor and head length / body mass) that maximize the likelihood 
of the data given the model

If we assume each data point is independent, then probability of multiple independent 
events is just multiplying the probability of each event:



Data is more likely (less noise needed to explain) with good models

We find the latent structure by assuming a given structure and finding the parameters (relation between size factor 
and head length / body mass) that maximize the likelihood of the data given the model



Why all this trouble for something that looks like PCA?
Data recipes can capture much more interesting structure!

Latent dynamics models:

PCA is a completely static model, it completely ignores dynamics in the data

𝑥 = 𝑧 ∗ 𝑓 + µ 𝑥(𝑡) = 𝐴𝑥(𝑡 − 1) + 𝜖

Factor Analysis model Latent Linear Dynamical System model



Summary

All biological data has structure! Just finding structure is not a result!

Finding structure can be useful to deal with noisy measurements

Finding structure can be useful if we can directly interpret it

This is not an exhaustive list. The point is that it needs to be thought through


